Introduction to Particle Filters

Peter Jan van Leeuwen and Mel Ades Data-Assimilation Research Centre DARC University of Reading

Adjoint Workshop 2011

Data assimilation: general formulation

Parameter estimation:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

with

$$y = H(\theta) + \epsilon$$

Again, no inversion but a direct point-wise multiplication.

How is this used today in geosciences?

Present-day data-assimilation systems are based on linearizations and state covariances are essential.

4DVar

- smoother
- Gaussian pdf for initial state, observations (and model errors)
- allows for nonlinear observation operators
- solves for posterior mode.
- needs good error covariance of initial state (B matrix)
- 'no' posterior error covariances

How is this used today in geosciences?

Representer method (PSAS):

- solves for posterior mode in observation space (Ensemble) Kalman filter:
 - assumes Gaussian pdf's for the state,
 - approximates posterior mean and covariance
 - doesn't minimize anything in nonlinear systems
 - needs inflation (but see Mark Bocquet)
 - needs localisation

Combinations of these: hybrid methods (!!!)

Non-linear Data Assimilation

- Metropolis-Hastings
- Langevin sampling
- Hybrid Monte-Carlo
- Particle Filters/Smoothers

All try to sample from the posterior pdf, either the joint-in-time, or the marginal. Only the particle filter/smoother does this sequentially.

Nonlinear filtering: Particle filter

$$p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x) dx}$$

Use ensemble
$$p(x) = \sum_{i=1}^{N} \frac{1}{N} \delta(x - x_i)$$

$$p(x|y) = \sum_{i=1}^{N} w_i \delta(x - x_i)$$

with

$$w_i = \frac{p(y|x_i)}{\sum_j p(y|x_j)}$$

the weights.

What are these weights?

- The weight w_i is the normalised value of the pdf of the observations given model state x_i .
- For Gaussian distributed variables is is given by:

$$w_i \propto p(y|x_i)$$

$$\propto \exp\left[-\frac{1}{2}(y - H(x_i))R^{-1}(y - H(x_i))\right]$$

- One can just calculate this value
- That is all !!!

No explicit need for state covariances

- 3DVar and 4DVar need a good error covariance of the prior state estimate: complicated
- The performance of Ensemble Kalman filters relies on the quality of the sample covariance, forcing artificial inflation and localisation.
- Particle filter doesn't have this problem, but...

Standard Particle filter

A simple resampling scheme

1. Put all weights on the unit interval [0,1]:

2. Draw a random number from U[0,1/N] (= U[1,1/10] in this case). Put it on the unit interval: this is the first resampled particle.

3. Add 1/N: this is the second resampled particle. Etc.

In this example we choose old particle 1 three times, old particle 2 two times, old particle 3 two times etc.

A closer look at the weights I

Probability space in large-dimensional systems is

'empty': the curse of dimensionality

A closer look at the weights II

Assume particle 1 is at 0.1 standard deviations *s* of M independent observations.

Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

$$w_1 \propto \exp\left[-\frac{1}{2} (y - H(x_i)) R^{-1} (y - H(x_i))\right] = exp(-0.005M)$$

and particle 2 gives

$$w_2 \propto \exp\left[-\frac{1}{2} (y - H(x_i)) R^{-1} (y - H(x_i))\right] = exp(-0.02M)$$

A closer look at the weights III

The ratio of the weights is

$$\frac{w_2}{w_1} = exp(-0.015M)$$

Take M=1000 to find

$$\frac{w_2}{w_1} = exp(-15) \approx 3 \ 10^{-7}$$

Conclusion: the number of independent observations is responsible for the degeneracy in particle filters.

How can we make particle filters useful?

The joint-in-time prior pdf can be written as:

$$p(x^n, x^{n-1}) = p(x^n | x^{n-1})p(x^{n-1})$$

So the marginal prior pdf at time *n* becomes:

$$p(x^n) = \int p(x^n | x^{n-1}) p(x^{n-1}) \ dx^{n-1}$$

We introduced the transition densities

$$p(x^n|x^{n-1})$$

Meaning of the transition densities

Stochastic model:

$$x^{n} = f(x^{n-1}) + \beta^{n-1}$$

Transition density:

$$p(x^n|x^{n-1}) \propto p(\beta^{n-1})$$

So, draw a sample from the model error pdf, and use that in the stochastic model equations.

For a deterministic model this pdf is a delta function centered around the the deterministic forward step.

For a Gaussian model error we find:

$$p(x^n|x^{n-1}) = N(f(x^{n-1}), Q)$$

Bayes Theorem and the proposal density

Bayes Theorem now becomes:

$$p(x^{n}|y^{n}) = \frac{p(y^{n}|x^{n})p(x^{n})}{p(y)}$$

$$= \frac{p(y^{n}|x^{n})}{p(y)} \int p(x^{n}|x^{n-1})p(x^{n-1}) dx^{n-1}$$

Multiply and divide this expression by a proposal transition density *q*:

$$p(x^{n}|y^{n}) = \frac{p(y^{n}|x^{n})}{p(y)} \int \frac{p(x^{n}|x^{n-1})}{q(x^{n}|x^{n-1}, y^{n})} q(x^{n}|x^{n-1}, y^{n}) p(x^{n-1}) dx^{n-1}$$

The magic: the proposal density

We found:

$$p(x^n|y^n) = \frac{p(y^n|x^n)}{p(y)} \int \frac{p(x^n|x^{n-1})}{q(x^x|x^{n-1}, y^n)} q(x^n|x^{n-1}, y^n) p(x^{n-1}) dx^{n-1}$$

Note that the transition pdf q can be conditioned on the future observation y^n .

The trick will be to draw samples from transition density *q* instead of from transition density *p*.

How to use this in practice?

Start with the particle description of the conditional pdf at *n-1* (assuming equal weight particles):

$$p(x^{n-1}) = \frac{1}{N} \sum_{i=1}^{N} \delta(x^{n-1} - x_i^{n-1})$$

Leading to:

$$p(x^{n}|y^{n}) = \frac{p(y^{n}|x^{n})}{p(y)} \frac{1}{N} \sum_{i=1}^{N} \frac{p(x^{n}|x_{i}^{n-1})}{q(x^{n}|x_{i}^{n-1}, y^{n})} q(x^{x}|x_{i}^{n-1}, y^{n})$$

Practice II

For each particle at time n-1 draw a sample from the proposal transition density q, to find:

$$p(x^{n}|y^{n}) = \frac{1}{N} \sum_{i=1}^{N} \frac{p(y^{n}|x_{i}^{n})}{p(y)} \frac{p(x_{i}^{n}|x_{i}^{n-1})}{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})} \delta(x^{n} - x_{i}^{n})$$

Which can be rewritten as:

$$p(x^n|y^n) = \sum_{i=1}^N w_i \delta(x^n - x_i^n)$$

with weights

$$w_{i} = \frac{p(y^{n}|x_{i}^{n})}{p(y^{n})} \frac{p(x_{i}^{n}|x_{i}^{n-1})}{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})}$$

Likelihood weight

Proposal weight

What is the proposal transition density?

The proposal transition density is related to a proposed model. In theory, this can be any model!

For instance, add a nudging term and change random forcing:

$$x^{n} = f(x^{n-1}) + \hat{\beta}^{n-1} + K(y^{n} - H(x^{n-1}))$$

Or, run a 4D-Var on each particle. This is a special 4D-Var:

- initial condition is fixed
- model error essential
- needs extra random forcing (perhaps perturbing obs?)

How to calculate p/q?

Let's assume

$$p(x^n|x^{n-1}) = N(f(x^{n-1}), Q)$$

Since x_i^n and x_i^{n-1} are known from the proposed model we can calculate directly:

$$p(x_i^n | x_i^{n-1}) \propto exp\left[-\frac{1}{2}\left(x_i^n - f(x_i^{n-1})\right)^T Q^{-1}\left(x_i^n - f(x_i^{n-1})\right)\right]$$

Similarly, for the proposal transition density:

$$q(x_i^n | x_i^{n-1}, y^n) \propto exp \left[-\frac{1}{2} \hat{\beta}_i^{n-1} \hat{Q}^{-1} \hat{\beta}_i^{n-1} \right]$$

Algorithm

- Generate initial set of particles
- Run proposed model conditioned on next observation
- Accumulate proposal density weights p/q
- Calculate likelihood weights
- Calculate full weights and resample
- Note, the original model is never used directly.

Particle filter with proposal transition density

However: degeneracy

For large-scale problems with lots of observations this method is still degenerate:

Only a few particles get high weights; the other weights are negligibly small.

Recent ideas

- 'Optimal' proposal transition density: is not optimal. This method is explored by Chorin and Tu (2009), and Miller (the 'Berkeley group').
- Other particle filters use interpolation (Anderson, 2010; Majda and Harlim, 2011), can give rise to balance issues. Proposal not used (yet).
- Briggs (2011) explores a spatial marginal smoother at analysis time. Needs copula for joint pdf, chosen as an elliptical density.
- Can we do better?

Almost equal weights I

1. We know:

$$w_i = \frac{p(y^n | x_i^n)}{p(y^n)} \frac{p(x_i^n | x_i^{n-1})}{q(x_i^n | x_i^{n-1}, y^n)}$$

2. Write down expression for each weight ignoring *q* for now:

$$w_i \propto w_i^{rest} \exp \left[-\frac{1}{2} \left(x_i^n - f(x_i^{n-1}) \right)^T Q^{-1} \left(x_i^n - f(x_i^{n-1}) \right) - \frac{1}{2} (y^n - H(x_i^n))^T R^{-1} (y^n - H(x_i^n)) \right]$$

3. When H is linear this is a quadratic function in x_i^n for each particle. Otherwise linearize.

Almost Equal weights II

4. Determine a target weight

Almost equal weights III

5. Determine corresponding model states, infinite number of solutions.

Determine α at crossing of line with target weight contour in:

$$x_i^n = f(x_i^{n-1}) + \alpha K\left(y^n - Hf(x_i^{n-1})\right)$$

with
$$K = QH^T(HQH^T + R)^{-1}$$

Almost equal weights IV

6. The previous is the deterministic part of the proposal density.

The stochastic part of q should not be Gaussian because we divide by q, so an unlikely value for the random vector $\hat{\beta}_i^{n-1}$ will result in a

huge weight:

$$w_i = \frac{p(y^n | x_i^n)}{p(y^n)} \frac{p(x_i^n | x_i^{n-1})}{q(x_i^n | x_i^{n-1}, y^n)}$$

A uniform density will leave the weights unchanged, but has limited support.

Hence we choose $\hat{\beta}_i^{n-1}$ from a mixture density:

$$p(\hat{\beta}_i^{n-1}) \propto (1-a)U[-b,b] + aN(0,\hat{Q})$$

with a,b,Q small

Almost equal weights V

The full scheme is now:

- Use modified model up to last time step
- Set target weight (e.g. 80%)
- Calculate deterministic moves:

$$x_i^n = f(x_i^{n-1}) + \alpha K\left(y^n - Hf(x_i^{n-1})\right)$$

Determine stochastic move

$$p(\hat{\beta}_i^{n-1}) \propto (1-a)U[-b,b] + aN(0,\hat{Q})$$

 Calculate new weights and resample 'lost' particles

Conclusions

- Particle filters do not need state covariances.
- Observations do not have to be perturbed.
- Degeneracy is related to number of observations, not to size of the state space.
- Proposal density allows enormous freedom
- Almost-equal-weight scheme is scalable => highdimensional problems.
- Other efficient schemes are being derived.

We need more people!

- In Reading only we expect to have 10 new PDRA positions available in the this year
- We also have PhD vacancies
- And we still have room in the

Data Assimilation and Inverse Methods in Geosciences MSc program

Gaussian-peak weight scheme

The weights are given by:
$$w_i = \frac{p(y^n|x_i^n)}{p(y^n)} \frac{p(x_i^n|x_i^{n-1})}{q(x_i^n|x_i^{n-1},y^n)}$$

and our goal is to make these weights almost equal by choosing a good proposal density, and a natural limit for N --> infinity.

We start by writing

$$-2\log\left(p(y|x_i^n)p(x_i^n|x_i^{n-1})\right) = \left(x_i^n - f(x_i^{n-1})\right)^T Q^{-1} \left(x_i^n - f(x_i^{n-1})\right) + (y^n - H(x_i^n))^T R^{-1} (y^n - H(x_i^n))$$

Which can be rewritten as (completing the square on x_i^n):

$$-2\log(p(y|x_i^n)p(x_i^n|x_i^{n-1})) \propto (x_i^n - m_i)^T P^{-1} (x_i^n - m_i) + \phi_i$$

With the constant

$$\phi_i = (y - Hf(x_i^{n-1})) (HQH^T + R)^{-1} (y - Hf(x_i^{n-1}))$$

Write the proposal transition density as:

$$-2\log(q(x_i^n|x_i^{n-1},y^n)) \propto (x_i^n - m_i)^T \hat{Q}_i^{-1} (x_i^n - m_i) + \phi_i$$

So we draw samples from this Gaussian density. The normalisation of q leads to the relation

$$|\hat{Q}_i|^{1/2} \propto \exp[-\phi_i]$$

To control the weights write:

$$-2\log(p(y|x_i^n)p(x_i^n|x_i^{n-1})) \propto (x_i^n - m_i)^T P^{-1} (x_i^n - m_i) + \phi_i$$

as

This is q

$$-2\log \left(p(y|x_i^n)p(x_i^n|x_i^{n-1})\right) \propto \left(x_i^n - m_i\right)^T \hat{Q}_i^{-1} (x_i^n - m_i) + \phi_i + (x_i^n - m_i)^T S_i^{-1} (x_i^n - m_i)$$

To find weights:

$$w_i \propto \exp\left[-\frac{1}{2}(x_i^n - m_i)^T S_i^{-1}(x_i^n - m_i)\right]$$

And a relation between the covariances:

$$P = \hat{Q}_i(\hat{Q}_i + S_i)^{-1}S_i$$

The final idea...

So, the idea is to draw from $N(0, \hat{Q}_i)$ and the weights come out as drawn from $N(0, S_i)$.

Example: one step, with equal weight ensemble at time *n-1*

- 400 dimensional system, Q = 0.5
- 200 observations, sigma = 0.1
- 10 particles
- Four Particle filters:
 - Standard PF
 - 'Optimal' proposal density
 - Almost equal weight scheme
 - Gaussian-peak weight scheme

Performance measures

Effective ensemble size

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} w_i^2}$$

Filter: Squared difference from truth: Effective ensemble size:

PF standard error	1.3931	1
PF-'optimal' error	0.10889	1
PF-Almost equal error	0.073509	8.8
PF-Gaussian Peak error	0.083328	9.4

'Optimal' proposal density has no pdf information, new schemes performing well.